

BONDING IN ORGANIC MOLEULES

- 7.1 Petroleum Refining and the Hydrocarbons
- 7.2 The Alkane
- 7.3 The Alkenes and Alkynes
- 7.4 Aromatic Hydrocarbons
- 7.5 Fullerenes
- **7.6** Functional Groups and Organic Reactions *Connections to Biology*: Functional Groups in Proteins
- 7.7 Pesticides and Pharmaceuticals

Cubane C₈H₈

A petroleum refining tower General Chemistry II

7.1 PETROLEUM REFINING AND THE HYDROCARBONS

Petroleum: in latin ~ petra (rock) + oleum (oil) --- Crude Oil Documented of usage 4000 yrs ago in Babylon. Has been used as fuel in China since 400 B.C. Has been used as a medicine since 15C. In Europe. In 1854, world first modern oil well In 1856, world first refinery In 1859, world first actual modern oil well

Petroleum: major constituents are **hydrocarbons** Hydrocarbon: compounds of hydrogen and carbon

Carbon - 83 to 87%, Hydrogen - 10 to 14%, Nitrogen: 0.1 to 2%, Oxygen: 0.05 to 1.5%, Sulfur: 0.05 to 6.0%, Metals: < 0.1%

CHEMISTE

What can you make from one barrel of oil?

Researchers broke down a typical barrel of domestic crude oil into what could be produced from it. The average domestic crude oil has a gravity of **32 degrees** and weighs **7.21 pounds per gallon**. Here's what just one barrel of crude oil can produce

Products Made from a Barrel of Crude Oil

7.2 THE ALKANES

 Hydrocarbons – compounds that are only compose d of hydrogen and carbon

Which of the molecules above is saturated with hyd rogen atoms?

7.2 THE ALKANES

Normal Alkanes: straight chain alkanes

Saturated hydrocarbon : all bonds are single bonds

Polyethylene

Saturated hydrocarbon : *all bonds are single bonds*

"Alkane" paraffin

of structures *--- isomers*

Branched-Chain Alkanes & Isomerism

 $C_n \overline{H_{2n+2}}$

CH_4	methane	1
C_2H_6	ethane	1
C_3H_8	propane	1
C_4H_{10}	butane	2
$C_{5}H_{12}$	pentane	3
C_6H_{14}	hexane	5
C_7H_{16}	heptane	9
C_8H_{18}	octane	(11)
$C_{30}H_{62}$	triacontane	4.11 x 10 ⁹
Chemist	ry II	CHEMISTRY

Example : C_5H_{12}

- 1. Structural (constitutional) isomer: different bonding arrangements of the same atoms.
 - 구조이성질체
- 2. Stereoisomer: same bonding arrangement, different spatial positions. 입체 이성질체
- -- enantiomer (거울상 이성질체)

These are mirror images and not superimposable i.e. different compounds.

Different but have same physical properties except optical rotation. i.e. inseparable

CHEMTST

Satruated hydrocarbon : *Ring structures* C_nH_{2n}

Cyclic Compounds

Usually unstable when it's small Associate with strain energy

·H

Most stable cyclic compound

chair form

boat form

Cyclopropane

General Chemistry II

Most strained reactive

Cyclopropane

 Cyclopropane is 44 kJ/mol less stable than cyclohexane per CH₂ group. It is highly strained and very reactive

.....H

- 1. Angle strain
 - Bond angles of 60° cause electron p air repulsion in adjacent bonds
 - Inefficient sigma bond overlap
- Torsional strain eclipsing C-H bonds all the way around the ring Human

7.3 THE ALKENES AND ALKYNES

Alkenes

The Alkenes and Alkynes

Unsaturated hydrocarbons

Alkene ~ double bonds ex. Ethene (Ethylene), C_2H_4 Alkyne ~ triple bonds ex. Ethyne (Acetylene), C_2H_2

Fig. 7.10. Reaction with KMnO₄.
(a) No reaction with hexane.
(b) Redox reaction with 1-hexene. Products: MnO₂ and CH₃(CH₂)₃CH(OH)CH₂OH

Unsaturated hydrocarbon : *Alkenes, Alkynes*

Alkene : C_nH_{2n}

Pi bonds are more reactive than sigma bonds

Trans isomer is more stable due to steric effect

2. Stereoisomer: same bonding arrangement, different spatial positions. 입체 이성질체

Unsaturated hydrocarbon : *Alkenes, Alkynes*

Unsaturated hydrocarbon : *Alkenes, Alkynes*

Polyenes

$$H \to C \to H (Allene)$$

p molecular orbitals of butadiene; see chapter 20 p976

More stable than isolated two double bonds

7.4 AROMATIC HYDROCARBONS

Hydrocarbons with $C_{4n+2}H_{2n+4}$

Benzene: simplest example C₆H₆

Modern view of three double bonds: delocalized

General Chemistry II

represented as circle inside

more stable than trienes *i.e. much less reactive*

Aromatics from petroleum

7.6 FUNCTIONAL GROUPS AND ORGANIC REACTIONS

TABLE 18.4

Common hydrocarbon derivatives					
Derivative	Functional group	General form			

Derivative	Functional group	General formula	Examples	
Halide	—Cl, —Br	R—Cl	CH ₂ Cl ₂ , methylene choride (dichloromethane)	CH ₃ CHClCH ₃ isopropyl chloride (2-chloropropane)
Alcohol	-OH	R-OH	CH ₃ OH methanol	CH ₃ CH ₂ OH ethanol
Ether	-0-	R-O-R'	$CH_3CH_2 - O - CH_2CH_3$	CH ₃ -O-C(CH ₃) ₃
			Diethyl ether	Methyl <i>t</i> -butyl ether (MTBE)
Ketone	$\overset{\mathrm{O}}{\overset{\parallel}{_{-\mathrm{C}}}}_{-\mathrm{C}}-$	$\stackrel{\mathrm{O}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\mathbb{I$	$CH_3 - C - CH_3$	$CH_3 - C - CH_2CH_3$
			Acetone (propanone)	Methyl ethyl ketone (MEK) (butanone)
Aldehyde	$\overset{\mathrm{O}}{\overset{\mathbb{I}}{-\mathrm{C}}-\mathrm{H}}$	$\stackrel{\mathrm{O}}{\overset{\parallel}{\overset{\parallel}}}_{\mathrm{R-C-H}}$	О Н—С—Н	$CH_3 - C - H$
			Formaldehyde (methanal)	Acetaldehyde (ethanal)
Carboxylic acid	О -С-ОН	O ∥ R−C−OH	О Ш СН ₃ —С—ОН	O ∥ CH ₃ CH ₂ −C−OH

Acetic acid

(ethanoic acid)

Propionic acid

(propanoic acid)

Copyright © 2006 Pearson Education, Inc., Publishing as Benjamin Cummings

Aldehyde, Ketone

Carboxylic acid

Ester

Pear

Pineapple

H₂

0

Jasmine

Apple

General Chemistry II

H₃C

Esters, –oate, R-C-O-R'

- Product of the reaction between a carboxylic acid and an alcohol
- Fragrant odors, flavors of fruits

Triglycerides

Trans fats (트랜스지방脂肪)

- Hydrogenation of oils (ester of cis-unsaturated fatty acids)
 - Saturated fats with higher m. p.:
 - \rightarrow solid, good for baking and extended shelf-life
 - Remaining double bonds converted from
 - cis to trans isomers \rightarrow bad for health!

Cadaverine (시체썩는 냄새)

Methamphetamine (필로폰)

Stereoisomers

Diastereomers: Stereoisomers are not mirror images of one another and nonsuperimposable.

Stereochemistry

- Separation of enantiomers
- Recognition of enationmers differently

Importance of Stereochemistry

Reactions of organic compounds

1. carbon-carbon bond formation & cleavage

Carbocation Carbanion Lewis acid Lewis base

2. general reactive intermediates General Chemistry II

Conversion of organic functional groups

Synthesis & reactions of Esters How does esters form?

Fischer Esterification

7.7 PESTICIDES AND PHARMACEUTICALS

Impact of Organic Compounds to the World > 90% of matter on earth are organic! *i.e. organic compounds are everywhere around us.*

From nature (natural products) and beyond.....

More natural products

Significant organic molecules made by chemists

Mauveine (dye, purple)

teflon

Prontosil (antibiotic)

viagra

Omeprazole (antiulcer)

Olanzapine (schizoprenia)

Prozac (antidepressant)

